Mutation induced modulation of hydrogen bonding to P700 studied using FTIR difference spectroscopy.

نویسندگان

  • Ruili Wang
  • Velautham Sivakumar
  • Yajing Li
  • Kevin Redding
  • Gary Hastings
چکیده

Site-directed mutagenesis in combination with Fourier transform infrared difference spectroscopy has been used to study how hydrogen bonding modulates the electronic and physical organization of P700, the primary electron donor in photosystem I. Wild-type PS I particles from Chlamydomonas reinhardtii and a mutant in which ThrA739 is changed to alanine [TA(A739) mutant] were studied. ThrA739 is thought to provide a hydrogen bond to the chlorophyll-a' molecule of P700 (the two chlorophylls of P700 (P700(+)) will be called P(A) and P(B) (P(A)(+) and P(B)(+))). The mutation considerably alters the (P700(+)-P700) FTIR difference spectra. However, we were able to describe all of the mutation induced changes in the difference spectra in terms of difference band assignments that were proposed recently (Hastings, G., Ramesh, V. M., Wang, R., Sivakumar, V. and Webber, A. (2001) Biochemistry 40, 12943-12949). Upon comparison of mutant and wild type (P700(+)-P700) FTIR difference spectra, it is shown that (1) the 13(3) ester carbonyl modes of P(A) and P(B) are unaltered upon mutation of ThrA739 to alanine. (2) The 13(3) ester carbonyl modes of P(A)(+)/P(B)(+) upshift/downshift upon mutation. These oppositely directed shifts indicate that the mutation modifies the charge distribution over the pigments in the P700(+) state, with charge on P(B) being relocated onto P(A). We also show that the 13(1) keto carbonyl mode of P(B)/P(B)(+) is unaltered/downshifted upon mutation, as is expected for the above-described mutation induced charge redistribution in P700(+). Although the 13(3) ester carbonyl modes of the chlorophylls of P700 in the ground state are unaltered upon mutation, the 13(1) keto carbonyl mode of P(A) upshifts upon mutation, as does the 13(1) keto carbonyl mode of P(A)(+). For P700 in the ground state, bands that we associate with HisA676/HisB656 upshift/downshift upon mutation. For the P700(+) state, bands that we associate with HisA676/HisB656 also upshift/downshift upon mutation. These observations are also consistent with the notion that the mutation leads to the charge on P(B)(+) being relocated onto P(A)(+). In addition, we suggest that a hydrogen bond to the 13(1) keto carbonyl of P(A) is still present in the TA(A739) mutant, probably mediated through an introduced water molecule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina.

Fourier transform infrared spectroscopy (FTIR) difference spectroscopy in combination with deuterium exchange experiments has been used to study the photo-oxidation of P740, the primary electron donor in photosystem I from Acaryochloris marina. Comparison of (P740(+)-P740) and (P700(+)-P700) FTIR difference spectra show that P700 and P740 share many structural similarities. However, there are s...

متن کامل

FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700+ in photosystem I.

Room temperature, light induced (P700(+)-P700) Fourier transform infrared (FTIR) difference spectra have been obtained using photosystem I (PS I) particles from Synechocystis sp. PCC 6803 that are unlabeled, uniformly (2)H labeled, and uniformly (15)N labeled. Spectra were also obtained for PS I particles that had been extensively washed and incubated in D(2)O. Previously, we have found that ex...

متن کامل

Time-resolved FTIR difference spectroscopy for the study of photosystem I particles with plastoquinone-9 occupying the A1 binding site.

In photosystem I from plants and cyanobacteria a phylloquinone molecule, called A1, functions as the secondary electron acceptor. In cyanobacteria, genes that encode for proteins involved in phylloquinone biosynthesis can be deleted. Here, we have studied three different gene deletion mutants called menB, menD, and menE mutants. In these mutants, plastoquinone-9 occupies the A1 binding site. Us...

متن کامل

A Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in photosystem I: are both phylloquinones involved in electron transfer?

Photoaccumulated Fourier transform infrared difference spectra associated with P700(+) and P700(+)A(1)(-) formation have been obtained using purified photosystem I particles from Synechocystis sp. PCC 6803. From these spectra, a difference spectrum associated with phylloquinone reduction (A(1)(-) - A(1)) has been calculated. Infrared absorption changes associated with both the loss of the groun...

متن کامل

Mutation of the putative hydrogen-bond donor to P700 of photosystem I.

The primary electron donor of photosystem I (PS1), called P(700), is a heterodimer of chlorophyll (Chl) a and a'. The crystal structure of photosystem I reveals that the chlorophyll a' (P(A)) could be hydrogen-bonded to the protein via a threonine residue, while the chlorophyll a (P(B)) does not have such a hydrogen bond. To investigate the influence of this hydrogen bond on P(700), PsaA-Thr739...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 42 33  شماره 

صفحات  -

تاریخ انتشار 2003